

Round table: Innovative engineering solutions in the history of nuclear industry as a prerequisite of sustainable development

# Perspectives of development of two-component nuclear energy system – vision of Russian customer

## Alexander Shutikov, First Deputy Director General Rosenergoatom

Moscow June 19, 2017



## **Russian nuclear power: actuals and prospective up to 2035**

- 35 nuclear power units with installed capacity 27.9 GW, of which 15.5 GW VVER, 11 GW RBMK, and 1.4 GW BN reactors.
- The Russian Energy Strategy up to 2035 and the RF Territorial Power Generation Planning Scheme prescribe: Keeping the share of nuclear power generation up to 18%; Growth of total installed capacity up to ~38 GW(e) by 2035 With phasing-out of existing RBMK power units, VVER power generation share will make

- about 95% by 2035.
- Precondition of the Strategy goal achievement is improvement of economic competitiveness and investment attractiveness of nuclear power industry



## Rosenergoatom strategy: transfer to a two-component nuclear energy system

Balance between fast and thermal neutron reactor units in a two-component system depends on the strategy being implemented: from utilization of plutonium and minor actinides (MA) from VVER SNF to a complete meeting of plutonium demands of VVERs (including foreign power units).





## Advantages of two-component nuclear energy system (NES)

NES shall ensure economic efficiency of nuclear generation at the domestic market due to:

 use of unlimited resource of waste uranium and natural uranium for feeding-up the fuel cycle of BN and VVER reactors having in mind inevitable shortage of uranium and its price growth;
 liquidation of accumulated plutonium stocks;

3) reduction of accumulated SNF volumes through its reprocessing and nuclear materials recycling – resulting in reduction of Rosenergoatom expenditures for SNF management;
4) considerable reduction of RW activity and volume due to long-living RW (minor actinides) burning-up in BN reactors;

5) plutonium production in BN reactors and its utilization in VVER reactors as MOX fuel .

# NES will open new opportunities for the State Corporation Rosatom at the external markets due to:

6) VVER export along with nuclear fuel "leasing";

7) commercial and scientific & technical cooperation in the field of BN technologies;

8) additional SNF related services for foreign NPPs as regard to storing, reprocessing and recycling of the extracted nuclear materials in BN reactors.



## **Roles in two-component nuclear energy system:**

**BN reactors:** 

•Generate electricity in the base load mode, allow for **power maneuvering within the range 100%-75%-100%.** 

•Use accumulated waste uranium or regenerated uranium as a feed-up, produce plutonium in a form most suitable for MOX fuel fabrication for VVER reactors;

•Burn-up long-living highly active RW – **minor actinides**, which are extracted as part of BN and VVER SNF reprocessing;

**VVER reactors:** 

- •Generates electricity in the mode of following the grid operator requests on power maneuvering;
- •Partially use **MOX fuel** instead of UO<sub>2</sub> fuel;
- •Exported abroad under a condition of SNF repatriation to Russia;
- •Plutonium extracted from VVER SNF is used for MOX fuel fabrication for BN reactors. Nuclear fuel cycle enterprises :
- •Provide for BN and VVER SNP reprocessing and nuclear materials extraction for reuse;

Fabricate MOX-fuel using waste uranium or regenerated uranium as well as plutonium extracted from SNF;
Ensure RW fractioning with the goal of subsequent utilization of minor actinides and reduction of nuclear material proliferation risks, provide for RW conditioning and disposal.



## Maturity of sodium cooled fast neutron reactor technology

#### Russian experience with BN reactor technology elaboration is over 150 reactor/years



BN-1200 safety: exclusion of any need to evacuate the public in case of an emergency; probability of severe core damage is below 10<sup>-6</sup> per reactor per year; in-vessel retention of core components damaged in a severe accident

6

## Rosenergoatom strategy regarding fuel selection for BN reactors: MOX-fuel

- 1. Fuel should be highly rated as regard to operation reliability, power output and allowing its further development beyond the performance level achieved;
- 2. Presently, those requirements are met by uranium oxide and MOX fuels;
- 3. So far, results of mixed nitride U-Pu (MNUP) fuel development works do not allow us considering it be meeting the above said requirements;
- 4. In a two-component NES, the key task towards reducing the nuclear fuel cycle (NFC) costs is the use of a unified fuel for both NES components;
- 5. Burnup level currently achieved for MOX fuel is 12.6% h.a., and for MNUP fuel 5.4% h.a.;
- 6. From the above one can conclude that MOX fuel is more beneficial. Nevertheless, as soon as MNUP fuel development progresses to a certain level, Rosenergoatom will be ready to use MNUP fuel.



## Rosenergoatom strategy on selection of NFC arrangement type: a centralized NFC



Such a centralized NFC as part of the two-component NES ensure reprocessing of SNF from both VVER and BN reactors, MOX-fuel fabrication for VVER and BN reactors, with a possibility of mutual exchange with reprocessing products.

Aggregate balance in a system comprising 1 BN + 2 VVERs: both natural uranium consumption and uranium separation work are two times less as compared to 3 VVERs



# Rosenergoatom strategy for international cooperation: a centralized NFC in Russia for NPPs abroad



- As of today, Russia is the only country having necessary technologies and sufficient operating experience with all integral parts as needed for introduction of a two-component nuclear energy system based on reactors with thermal and fast neutrons and closed nuclear fuel cycle:
  - Experience with development and operation of thermal neutron reactors of VVER type and fast neutron reactors of BN type;
  - Industrial technologies of MOX fuel fabrication;
  - Industrial technologies for storage and reprocessing SNF from thermal and fast neutron reactors;
  - Investigations to substantiate MA burning-up and RW activity reduction.



## **Resulting principles of rendering services to NES consumers (1/2)**

- 1. Avoid burdening the consumers with the problem of establishing production facilities for fresh fuel fabrication and SNF management;
- 2. Fuel, including MOX fuel, is to be leased during the entire life cycle;
- **3.** Ensure consolidation and utilization in reactors, under IAEA guarantees, of substantial volumes of civil plutonium accumulated in the world;
- 4. Increase ecological acceptability of the nuclear option through use of modern technologies for MA burning-up and RW management;
- 5. Ensure minimization of national sensitive nuclear technology programmes being undertaken as part of implementation of national programmes for nuclear industry development.



## **Resulting principles of rendering services to NES consumers (2/2)**

- Within introduction of two-component nuclear energy system based on thermal and fast neutron reactors and closed nuclear fuel cycle, Russia is ready to expand international cooperation for:
  - Establishing, *inter alia* with involvement of foreign investors, international centers on the base of power units with fast neutron reactor and centers of SNF reprocessing/nuclear fuel fabrication;
  - Participation in international projects focused on designing and operation of fast neutron reactors;
  - Supply of equipment and rendering consulting services for creation of modern fast neutron reactors.



Rosenergoatom

# Thank you for your attention!

