Nuclear Decommissioning Authority

UK Decommissioning Strategy

Round-table: Innovative engineering solutions in the history of nuclear industry as a prerequisite of sustainable development Atomexpo 2017

19 June 2017

Adrian Simper Director, Strategy & Technology Nuclear Decommissioning Authority

Nuclear Decommissioning Authority

- Background to the NDA
- Strategy
- Our sites, challenges & achievements

Chapelcross Cooling Towers

Sites & Liabilities

Strategy Themes and Topics

Nuclear Materials

Site Decommissioning and Remediation

Spent Fuels

Critical Enablers

Strategy Themes and Topics

- Strategy produced every 5 years
- Signed off by Ministers
- Site decommissioning & remediation
- Spent fuels
- Nuclear materials
- Integrated waste management
- Critical enablers

Site Decommissioning and Remediation

- Objective: To decommission and remediate our designated sites, and release them for other uses
- Key programmes:
 - Proportional Regulatory controls and a desire for similar approach to in-situ management
 - Need for understanding of the broader factors that influence spend
 - e.g. it's not just all about hazard
 - Need for understanding of end state near term affordability vs long term cost trade off
 - Introduction of interim states to describe the journey
 - Availability of disposal routes (e.g. geological disposal) affects the strategy
 - ALARP
 - Underpinning R&D
 - Prompt decommissioning of high hazard facilities
 - Deferred decommissioning of Magnox reactors

Spent Fuels

- Objective: To ensure safe, secure and cost-effective lifecycle management of spent fuels
- Reprocessing brought to a timely conclusion
 - 2018 THORP all overseas and UK contracts
 - 4,428 tHM overseas origin LWR
 - 5,020 tHM UK origin AGR
 - 2020 Magnox
 - 55,145 tHM UK, Italy, Japan
- Long-term storage of remaining spent fuel & vitrified HLW, pending disposal
- Return of vitrified HLW to overseas customers
- Consolidate "Exotic" materials from Dounreay to Sellafield for future management

Plutonium containers

Nuclear Materials

- Objective: To ensure safe, secure and cost-effective lifecycle management of our nuclear materials
- Pu arisen from reprocessing operations of UK and overseas fuel since 1950s:
 - Undertaken at Sellafield and Dounreay
 - ~114 tHM UK, ~20 tHM overseas at end of reprocessing
- Dounreay Pu stocks being consolidated at Sellafield:
 - New store at Sellafield
 - Old material to be repackaged
- Pu disposition options development:
 - Short term safe & secure storage
 - Medium term re-use options being considered (inc. MOX)
 - Long term Disposal
 - Underpinning R&D
 - Pu position papers available on website
- Considering U management options
 - ~48,800 t uranics (21,500 t UF₆ tails; 26,000 t MDU, 1,350 t other)
 - Safe & secure storage
 - Deconversion of tails hex at Capenhurst
 - Long term options being considered

Integrated Waste Management

- Objective: To ensure that wastes are managed in a manner that protects people and the environment, now and in the future, and in ways that comply with government policies and provide value for money
- Application of waste management hierarchy:
 - VLLW to industrial landfill
 - LLW to near-surface national facility
 - · ILW, vitrified HLW, spent fuel geological disposal
 - Overseas vitrified HLW returned
- In addition covers liquid & gaseous discharges, plus non-radioactive waste (e.g. asbestos)
- Considering options
 - A new near-surface facility for LLW and short-lived ILW
 - "Intermediate depth" disposal for reactor wastes

Packaged volume (in cubic metres)
1,600,000 m ³
449,000 m ³
.000 TBq 1,500 m ³

Packaged waste volumes (2150)

Critical Enablers

- R&D
- People (including skills and capability)
- Supply Chain development
- Socio economics
- Public and Stakeholder engagement
- Health, Safety, Security, Environment and Quality
- Asset Management
- Contracting
- Information Governance (Information and Knowledge Management)
- Transport & Logistics
- Revenue Optimization
- International Relations
- Land and Property Management

2 23

Sellafield skyline change

Calder Hall cooling towers demolished 2007

Sellafield Progress – Legacy Ponds & Silos

Pile Fuel Cladding Silo: installation of steel doors to allow access to retrieve the waste: James Fisher Nuclear, Shepley Engineers, Bechtel, Cavendish, BMT

Magnox Swarf Storage Silo: a breakthrough in the management of ILW storage is set to accelerate progress and save hundreds of millions of pounds

First Generation Magnox Storage Pond: First sludge retrievals completed from the pond Nuvia, Amec, Hertel & Cavendish

Pile Fuel Storage Pond: bulk stocks of fuel removed = hazard cut by 70%

NaK destruction

Demolition work

Dounreay – achievements

- Dounreay contract firmly embedded and delivering change
- 2 LLW vaults of 6 completed
 - 175,000m³ total capacity
- Dounreay Fast Reactor (DFR):
 - Pond drained and decontaminated ready for demolition.
 - 57 t NaK destruction
 - New equipment installed to remove breeder fuel
- Prototype Fast Reactor (PFR)
 - 1500 t Na removed and disposed
 - Materials test reactor decommissioning complete by 2018
- Shaft & Silo
 - 65m deep x 4.6m d
 - Waste retrieval starts 2024

PFR clean-up

Magnox

Berkeley in operation

Berkeley decommissioning

Bradwell Safestore - cladding complete

Magnox achievements

Chaplecross Asbestos strip

Harwell building demolitions

C&M

- Magnox stations 11 sites 1956 Calder Hall opens Dec. 2015 Wylfa closes 1,100 TWh generated
- All Magnox former generating sites are in transition through the following phases:

Defuelling – removal of fuel from reactor and transported to Sellafield for reprocessing – all apart from Wylfa

Care and Maintenance (C&M) preparations – removal of hazards such as sludges/ resins/ asbestos

C&M – reactor buildings & ILW store are left in a safe state until Final Site Clearance – many decades

Final Site Clearance – Provision of a GDF will enable final decommissioning of the sites

to take place

- Winfrith
 - 7 of 9 research reactors decommissioned
- Harwell
 - 11 of 14 research reactor decommissioned
- (Many other research university and industrial research reactors decommissioned – 1 remaining)

The NDA Estate - LLWR

- Low Level Waste Repository near Drigg has operated since 1959
- LLW is disposed of in engineered concrete vaults
- Key emphasis on recycling and reusing material to reduce the volumes being disposed of at LLWR
- VLLW to specially licenced landfill
- Application of Waste Management Hierarchy:
 - 2009 95% of LLW disposed of / 5% diverted
 - 2016 10% of LLW disposed of / 90% diverted
 - 100 year lifetime (including Nuclear New Build)

Geological Disposal Development

https://www.gov.uk/government/organisations/radioactive-wastemanagement

NDA Supply Chain Event 2017

Event City, Manchester - 2 November 2017 http://www.decommsupplyevent.co.uk/

Further announcements soon

Links

- <u>https://www.gov.uk/government/organisations/</u> nuclear-decommissioning-authority
- <u>https://www.linkedin.com/company-beta/70264/</u>
- https://nda.blog.gov.uk/
- https://twitter.com/ndagovuk
- https://www.youtube.com/user/ndagovuk
- https://www.flickr.com/photos/ndagovuk
- https://www.facebook.com/ndagovuk